Factorial
El factorial de un número entero no negativo (denotado como ) es el producto de todos los enteros positivos desde 1 hasta .
-
Fórmula general:
0! = 1
n! = n × (n-1)! para n ≥ 1 -
Ejemplo conceptual:
- 3! = 3 × 2 × 1 = 6
- 5! = 5 × 4 × 3 × 2 × 1 = 120
Algoritmo
El algoritmo consiste en calcular el producto descendente de un número entero:
- Si el número es 0 o 1, devolver 1 (caso base).
- Si el número es mayor que 1, multiplicar el número actual por el factorial del número anterior.
- Repetir hasta llegar al caso base.
Paso a paso con un ejemplo
Queremos calcular el factorial de 5 (5!):
- Paso 1: Fijar el número 5 → 5! = 5 × 4!
- Paso 2: Calcular 4! → 4! = 4 × 3!
- Paso 3: Calcular 3! → 3! = 3 × 2!
- Paso 4: Calcular 2! → 2! = 2 × 1!
- Paso 5: Caso base → 1! = 1
Ahora vamos resolviendo hacia arriba:
- 2! = 2 × 1 = 2
- 3! = 3 × 2 = 6
- 4! = 4 × 6 = 24
- 5! = 5 × 24 = 120
Resumen del proceso
- Se parte del número a calcular y se descompone en el producto descendente hasta llegar a 1.
- Cada paso multiplica el número actual por el resultado del factorial del número anterior.
- Se repite hasta llegar al caso base (0! o 1!).
- El resultado final es el factorial del número original.